Physikalische und numerische Akustik

Die numerische Simulation von Schallfeldern fördert das bessere Verständnis von Schall- bzw. Lärmausbreitung und ermöglicht dadurch zum Beispiel eine effizientere Planung von Maßnahmen zur Lärmreduktion. Aus diesem Grund beschäftigen wir uns mit der Entwicklung und Anwendung von computergestützten Modellen und Methoden zur Beschreibung der physikalischen Wechselwirkung zwischen Schall und Objekten.
Unsere Forschung befasst sich unter anderem mit Modellen zur Dynamik von Strukturen, Schallfeldern und Vibrationen mit Anwendungsgebieten in Lärmbekämpfung, Audio im Auto, Schallwahrnehmung und Sprachproduktion. Zu unseren Forschungsschwerpunkten zählen

  • die Entwicklung und Anwendung von effizienten Randelementemethoden (BEM) zur Simulation von Schallausbreitung in 2D, 2.5D und 3D,
  • die Entwicklung von effizienten Methoden zur Modellierung von Systemen mit hysteretischem Verhalten,
  • die Modellierung und psychoakustische Evaluierung von Methoden zur Bekämpfung von Lärm,
  • die Entwicklung von Modellen und Methoden zur Simulation des menschlichen Vokaltrakts.

Zwar werden jedes Jahr Computer schneller, die Anforderungen aus der Praxis an die Computermodelle (z.B. detailgetreuere Modelle, Simulation von größeren Objekten mit komplexer Geometrie, Anwendungen in Echtzeit, ...) werden jedoch ebenfalls ständig größer. Daher ist es notwendig, stetig neue robuste und effiziente Methoden zu entwickeln, und neue Ideen und Konzepte ins das Forschungsgebiet numerische und angewandte Mathematik einzuführen. Durch die enge Zusammenarbeit mit externen Partnern und mit allen anderen Arbeitsgruppen am ISF ist es möglich, neue mathematische Konzepte und Entwicklungen (z.B. Frames und Wavelets) mit ihrer unmittelbaren Umsetzung zur Lösung konkreter Probleme (z.B. die Berechnung von HRTFs für virtuelles 3D Audio, Beurteilung von Lärmreduktionsmaßnahmen,...) zu verknüpfen.

Lighthouse Thema: Detektion und Simulation von Lärm und seiner Ausbreitung zur Entwicklung von effizienten Gegenmaßnahmen

Lärm, d.h. unerwünschter Schall, ist ein Phänomen, das unser tägliches Leben beeinflusst, und das nicht nur lästig, sondern auch gesundheitsgefährdend sein kann. Aus diesem Grund ist das Thema Lärm und Lärmvermeidung ein Arbeitsschwerpunkt am ISF. In zahlreichen Projekten (PAAB, Wiabahn, PASS, LARS, RELSKG, SysBahnLärm, ...) untersuchten und untersuchen Wissenschaftlerinnen und Wissenschaftler am ISF gemeinsam mit Partnern aus Wissenschaft und Industrie (Asfinag, ÖBB, AIT, TUWien, ...) die Entstehung und Ausbreitung von Lärm sowie Methoden zur Vermeidung desselben. Unsere Forschung beschäftigt sich mit

  • Der Entstehung von Lärm,
  • Die Ausbreitung von Lärm,
  • Der Perzeption von Lärm.

Speziell zu diesem Thema bietet das ISF der interessierten Öffentlichkeit die Gelegenheit, am Internationalen Tag gegen Lärm das Institut zu besuchen und anhand zahlreicher Stationen unsere Arbeit kennenzulernen.

Weiterführende Links zum Thema Lärm

Andere ausgewählte Projekte

Mitarbeiter/innen

Computational AcousticsThe picture compares (left) the traditional Boundary Element Method (BEM) with the MLFMM (see larger picture).

The BEM is an important tool used in Acoustics. But the computational effort for traditional BEM, which is O(n2) (n is the number of unknowns), makes the solution of real life problems for high frequencies almost impossible. The combination with the Fast Multipole Method (FMM) reduces this effort to O(n·log2(n)), thus making it possible to also solve problems in the high frequency region.

high-speed train passing the microphone arrayMeasurements of noise of high speed trains (ICE-S from 200 km/h to 300 km/h) have been performed. Beam forming on horizontal as well as on vertical axis enables the identification of distinctive noise emissions generated from different sections of the trains passing by. Noise radiated from wheel-rail contact dominates at speeds up to 240km/h. At higher speeds flow noise originating from roof components and pantographs is clearly distinguishable.

To identify gear orders in a multiple motor component environment a specific method for the generation of order spectrograms has been implemented into S_TOOLS-STx. The method applies smoothing on the rpm-signal and uses re-sampling as well as the Discrete Fourier Transform (DFT) in combination with the anti aliasing filter to create order analysis spectrograms at reasonable computational cost.

Blind source seperation is based on PCA and ICA.

The principal component analysis (PCA) and independent component analysis (ICA) are methods to devide a mixture of sounds into uncorrelated or indendent components.

The PCA is based on the singular value decomposition (SVD) of a matrix or on the eigenvalue and eigenvector determination of a centered covarince or correlation matrix. 

PCA is applied in the method Spatial Transfrom of sound fields (STSF) to receive uncorrelated components from a mixture. The components are assumed to be coherent and projected by the method acoustic holography.

The method PCA was applied to simultaneous measurements of vibrations on the structure and sound in the far field. The components from the PCA are seperated into near field and far field components using the reaction of the far field microphone.  

The Doppler effect of moving sources in the far field was compensated either by correcting the transformation kernel from time to frequency domain or by re-sampling.

A better seperation of independent sources is possible, if ICA is applied. ICA in theory is based on the Kulback-Leibler divergency related to a Gaussian distribution to maximize a non-Gausianity. Approximations to this feature that are more stable and faster to optimize are used in the FastICA algorithms.

The FastICA code was applied to short pices of music and the notes were separated by this algorithm.

 

A project for the future is the combination of Comutational Fluid Dynamics (CFD) especially the Large Eddy Simulation (LES) with the Fast Multipole Boundary Element Method (FMBEM). The flow acoustics of a panthograph can be simulatied by this combination.

 A flutter instability in water was observed on rotor blades. The instability leads to high noise levels. A simple tool for the rapid simuation was developed. The panel method was combined with the finite element model of the blade to estimate the critical velocity of the fluid. 

Modal Analysis:

Modal analysis is a tool that allows to compare measurements and calculation in the low frequency region.

The modes are mainly calulated using the finite element method (FEM).

The measurement is recorded with an artifical excitation either by a shaker or an instrumented hammer. The admittances of the structure are derived using the power spectral density (PSD) of the excitation and the cross power spectral density of the response and the excitation.

The admittances of a discrete model as it is given in the FEM can be described by a quotient of two polynomials. The polynomial in the denominator is the same for all admittances of a structure.  The zeros of the polynomial in the denominator are the complex resonances of the structure.

A large number of methods exist for the esimation of the complex modes from the admittances. In the institute the Global Rational Fractional Polynomial (GRFP) method was implemented. An extension of the method allows to derivate directly the mode shape.

high-speed train passing the microphone array Beam forming of a 64 microphone array is applied when instationary or moving sound sources have to be processed. Numeric simulation corresponds with measurements of monopole sources in an anechoic room concerning dynamic relations and side lobe influence.

The project extends isotropic computation of vibrations in the soil to anisotropic material. Up to now mainly deterministic models have been used in practice.

loudspeaker radiation pattern Display of the radiation pattern of a loudspeaker The Acoustic Holography is an altenrative to the beam forming method. This method is able to handle nearfield and farfield components. The nearfield components decay exponentially. Therefore the distance to the source has to be as small as possible. Using a regular grid in two dimensions the Fourier transfromation about time and the two directions in space is used. The knowledge of the wavelength in two dimensions, of the frequency and the wave speed in air allows the derivation of the wavelength and -type in the third dimension. The wavelength in the third dimension is used to project the coherent sound field from the grid plane into a plane infront of the grid as close as possible to the surface of the structure.