Programmer Guide/Command Reference/EVAL/corrfun: Difference between revisions
From STX Wiki
< Programmer Guide | Command Reference | EVAL
Jump to navigationJump to search
(initial import) |
No edit summary |
||
(16 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{DISPLAYTITLE:{{SUBPAGENAME}}}} | {{DISPLAYTITLE:{{SUBPAGENAME}}}} | ||
= | Compute the autocorrelation or cross-correlation function. | ||
;Usage: | |||
:{|class="keinrahmen" | |||
|<code>corrfun(''x''<sub>vector</sub> {, ''n'' {, ''scale'' {, cyclic}}})</code> | |||
| ... autocorrelation of ''x'' | |||
|- | |- | ||
|corrfun(x | |<code>corrfun(''x''<sub>vector</sub>, ''y''<sub>vector</sub> {, ''n'' {, ''scale'' {, cylic}}})</code> | ||
| | | ... cross correlation of ''x'' and ''y'' | ||
|} | |||
:;''x'', ''y'': data vectors | |||
:;''n'': the number of lags; 0 < n < <code>ncol(''x'')</code> (default=<code>ncol(''x'')/2</code>) | |||
:;''scale'': specifies the scaling of the function: | |||
::{|class="keinrahmen" | |||
|''scale=0'' | |||
| ... no scaling (default) | |||
|- | |- | ||
| | |''scale=1'' | ||
| | | ... "biased", each lag ''i'' is scaled by the length of ''x'' (<code>1/ncol(''x'')</code>) | ||
|- | |- | ||
| | |''scale=2'' | ||
|the number of | | ... "unbiased", each lag ''i'' is scaled by the number of correlated elements (<code>1/(ncol(''x'')-''i'')</code>) | ||
| | |} | ||
:;''cyclic'': normal or cyclic indexing | |||
::{|class="keinrahmen" | |||
|''cyclic=0'' | |||
| ... normal (default); (<code>acf[i]=sum(x[t]*y[t+i], t=0..ncol(x)-1-i)<code>) | |||
|- | |- | ||
| | |''cyclic!=0'' | ||
| ... cyclic; (<code>acf[i]=sum(x[t]*y[(t+i)%ncol(x)], t=0..ncol(x)-1)<code>) | |||
| | |||
|} | |} | ||
The | ;Result: The autocorrelation function of the data vector ''x'' or the cross correlation function of the vectors ''x'' and ''y''. The result is a scalar (if ''n''=1) or a vector with ''n'' elements. | ||
;See also: [[../corr|corr]] | |||
[[../#Functions|<function list>]] | |||
| |
Latest revision as of 09:39, 1 September 2023
Compute the autocorrelation or cross-correlation function.
- Usage
corrfun(xvector {, n {, scale {, cyclic}}})
... autocorrelation of x corrfun(xvector, yvector {, n {, scale {, cylic}}})
... cross correlation of x and y
- x, y
- data vectors
- n
- the number of lags; 0 < n <
ncol(x)
(default=ncol(x)/2
) - scale
- specifies the scaling of the function:
scale=0 ... no scaling (default) scale=1 ... "biased", each lag i is scaled by the length of x ( 1/ncol(x)
)scale=2 ... "unbiased", each lag i is scaled by the number of correlated elements ( 1/(ncol(x)-i)
)
- cyclic
- normal or cyclic indexing
cyclic=0 ... normal (default); ( acf[i]=sum(x[t]*y[t+i], t=0..ncol(x)-1-i)
)
cyclic!=0 ... cyclic; ( acf[i]=sum(x[t]*y[(t+i)%ncol(x)], t=0..ncol(x)-1)
)
- Result
- The autocorrelation function of the data vector x or the cross correlation function of the vectors x and y. The result is a scalar (if n=1) or a vector with n elements.
- See also
- corr