Programmer Guide/Command Reference/EVAL/window: Difference between revisions

From STX Wiki
Jump to navigationJump to search
No edit summary
No edit summary
 
(29 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{DISPLAYTITLE:{{SUBPAGENAME}}}}
{{DISPLAYTITLE:{{SUBPAGENAME}}}}
Compute a window function used for signal windowing in sighnal processing algorithms.
Compute a window function used for signal windowing in signal processing algorithms.
 
;Usage: <code>window(<var>type</var>, <var>x</var> {, <var>scale</var> {, <var>par</var>}})</code>
;Usage: '''<code>window(<var>type</var>, <var>x</var> {, <var>scale</var> {, <var>par</var>}})</code>'''
:;<var>type</var>: selects the type of the window function (described below); must be number
:;<var>type</var>: selects the type of the window function (described below); must be number
:;<var>x</var>:
:;<var>x</var>:
Line 10: Line 9:
:;<var>scale</var>: A boolean argument to enable/disable energy correction. If the energy correction is enabled (''scale''!=0), the window function is scaled by a factor that approximately equalises the energy loss caused by the windowing. To preserve signal energy, ''scale'' should be set to 1, otherwise (to preserve signal amplitude) it should be 0.
:;<var>scale</var>: A boolean argument to enable/disable energy correction. If the energy correction is enabled (''scale''!=0), the window function is scaled by a factor that approximately equalises the energy loss caused by the windowing. To preserve signal energy, ''scale'' should be set to 1, otherwise (to preserve signal amplitude) it should be 0.
:;<var>par</var>: A window parameter depending on the type of the window function (described below). If ''par'' is set to '''0''' (default), a default parameter value is automatically selected.  
:;<var>par</var>: A window parameter depending on the type of the window function (described below). If ''par'' is set to '''0''' (default), a default parameter value is automatically selected.  
 
:;Description: The following table shows the implemented window functions and the meaning of the parameter ''par''. For the most types an alias function is implement, which is also shown in the table. In the column description w[i] is the i-th value of the window function (i = 0..n-1) and n is the window length.
_T("Rectangle"), _T("Hanning"), _T("Hamming"),
::{|
_T("Blackman"), _T("Kaiser"), _T("Bartlett"),
! ''type'' !! name !! ''par'' !! alias function !! description
_T("TapRectangle"), _T("NutTall"), _T("FlatTop"),
_T("Gaussian"), NULL
 
{|
! ''type'' !! description !! ''par'' !! alias function
|-
|-
| 0 || '''rectangle''' || not used ||
| 0 || '''rectangle''' || not used || || <pre>w[i] = 1</pre>
|-
|-
| 1 || '''hanning'''  || not used || <code>whanning(''x'' {, ''scale''})</code>
| 1 || '''hanning'''  || not used || <code>whanning(''x''{,''scale''})</code>
| <pre>w[i] = 0.5 - 0.5 * cos( a*i )
with: a = 2 * pi / (n-1)</pre>
|-
|-
| 2 || '''hamming'''  || not used || <code>whamming(''x'' {, ''scale''})</code>
| 2 || '''hamming'''  || not used || <code>whamming(''x''{,''scale''})</code>
| <pre>w[i] = 0.54 - 0.46 * cos( a*i )
with: a = 2 * pi / (n-1)</pre>
|-
|-
| 3 || '''blackman'''  || 0 < ''par'' <= 0.25<BR>default=0.16 || <code>wblackman(''x'' {, ''scale'' {, ''par''}})</code>
| 3 || '''blackman'''  || 0<''par''&le;0.25<BR>default=0.16 || <code>wblackman(''x''{,''scale''{,''par''}})</code>
| <pre>w[i] = (1-par)/2 - 0.5 * cos( a*i ) + par/2 * cos( 2*a*i )
with: a = 2 * pi / (n-1)</pre>
|-
|-
| 4 || '''kaiser'''  || 0 < ''par''<BR>default=8 || <code>wkaiser(''x'' {, ''scale'' {, ''par''}})</code>
| 4 || '''kaiser'''  || 0<''par''<BR>default=8 || <code>wkaiser(''x''{,''scale''{,''par''}})</code>
| <pre>w[i] = I0( par / m * sqrt(m^2 - (i-m)^2) ) / I0( par )
with: m = (n-1) / 2
      I0(z) is the modfied zero-order bessel function</pre>
|-
|-
| 5 || '''bartlett'''  || not used || <code>wbartlett(''x'' {, ''scale''})</code>
| 5 || '''bartlett'''<BR>(triangle) || not used || <code>wbartlett(''x''{,''scale''})</code>
| <pre>0 &le; i &le; m:  w[i] = i / m
m <  i <  n: w[i] = 2 - i / m
with: m = (n-1) / 2</pre>
|-
|-
| 6 || '''tappered rectangle'''  || not used || <code>wtaprect(''x'' {, ''scale''})</code>
| 6 || '''tappered rectangle'''  || not used || <code>wtaprect(''x''{,''scale''})</code>
| A rectangle with to short hanning slopes.
|-
|-
| 7 || '''nut-tall'''  || not used || <code>wnuttall(''x'' {, ''scale''})</code>
| 7 || '''nuttall'''  || not used || <code>wnuttall(''x''{,''scale''})</code>
| A 4-term blackman-harris window with high dynamic range, low frequency resolution and minimized maximum sidelobes.<BR>Nuttall, Albert H. "Some Windows with Very Good Sidelobe Behavior." IEEE Transactions on Acoustics, Speech, and Signal Processing. Vol. ASSP-29 (February 1981). pp. 84-91
|-
|-
| 8 || '''flat-top'''  || not used || <code>wflattop(''x'' {, ''scale''})</code>
| 8 || '''flat-top'''  || not used || <code>wflattop(''x''{,''scale''})</code>
|  A 5-term blackman-harris window with high dynamic range, low frequency resolution and minimized passband ripple (< 0.01dB). Flat-top windows are primarily used for calibration purposes.
|-
|-
| 9 || '''gauss'''  || 0 < ''par'' < 20<BR>default=3 || <code>wgauss(''x'' {, ''scale'' {, ''par''}})</code>
| 9 || '''gauss'''  || 0<''par''&le; 20<BR>default=3 || <code>wgauss(''x''{,''scale''{,''par''}})</code>
| <pre>w[i] = exp( -0.5 * (par * (m - i) / m) ^ 2 )
with: m = (n-1) / 2</pre>
|-
|-
|}
|}
::Notes:
::*If the argument ''type'' has an invalid value, the rectangle window is used.
::*If the energy-correction is enabled (argument ''scale''!=0), the values w[i] scaled by a factor that approximately equalises the energy loss caused by the window function. The scaling factor is computed using white noise as test signal.
::*If the argument ''par'' is supplied to a function not using this argument, it is ignored.
;Result: The result ''r'' depends on the argument ''x'':
:*x is a number: The value is used as window length ''n''. The result ''r'' is vector with length ''n'' containing the window function.
:*x is a vector or matrix: The number of rows of ''x'' is used as window length. Each column of ''x'' is multiplied with the window function (element-wise) and stored in a column of ''r''. The result ''r'' has the same type as ''x''.
;See also: [[../fft|fft]], [[../wconvert|wconvert]], [[../hth|hth]]


 
[[../#Functions|<function list>]]
;Result: The result ''r'' is a copy of ''x'' but the values of the elements of r are limited to the boundaries defined by ''lo'' and/or ''hi''.
::''r''<sub>i,j</sub> is set to ''lo'' if x<sub>i,j</sub> is lower than ''lo'' (functions '''limit''' and '''limitlow''')
::''r''<sub>i,j</sub> is set to ''hi'' if x<sub>i,j</sub> is greater than ''hi'' (functions '''limit''' and '''limithigh''')
 
;See also: [[Programmer_Guide/Command_Reference/EVAL/vsubc|vsubc]], [[Programmer_Guide/Command_Reference/EVAL/select|select]]
 
Example:
<pre>
#a := eval vv(1,2,3,4,5,4,3,2,1)
#b := eval fill(9,0,1)
#c := eval limitlow($#a, 3)
// -> $#c = { 3 , 3 , 3 , 4 , 5 , 4 , 3 , 3 , 3 }
#d := eval limit($#b, 2, 6)
// -> $#d[*,0] = { 2 , 2 , 3 , 4 , 5 , 4 , 3 , 2 , 2 }
//    $#d[*,1] = { 2 , 2 , 2 , 3 , 4 , 5 , 6 , 6 , 6 }
</pre>
 
[[Programmer_Guide/Command_Reference/EVAL#Functions|<function list>]]
 
 
General window function
 
{|
|-
|Usage:
|window(type, <var>x</var>, <var>scale</var>, <var>par</var>)
|-
|Parameters:
|The argument type is used to select the window function.{|
|-
|<var>type</var>=0 -> none (square)
|type=1 -> whanning
|-
|type=2 -> whamming
|type=3 -> wblackman
|-
|type=4 -> wkaiser
|type=5 -> wbartlett
|-
|type=6 -> wtaprect
|type=7 -> wnuttall
|-
|type=8 -> wflattop
|type=9 -> wgauss
|}
 
The arguments <var>x</var>, <var>scale</var> and <var>par</var> are the same as above.
 
arguments:
x The window length (scalar, >2), the signal (vector or matrix, nrow(x)>2). If x is a matrix, every column is multiplied with the window.
scale The scaling (0=unscaled, 1=scaled for rms(sig) ~ rms(sig * wnd)
par optional window parameters
 
The result is the signal window of length x or the signal multiplied by the window.

Latest revision as of 19:02, 21 April 2011

Compute a window function used for signal windowing in signal processing algorithms.

Usage
window(type, x {, scale {, par}})
type
selects the type of the window function (described below); must be number
x
  • If x is a scalar, the argument is used as window length and the result of window is a vector containing the window function.
  • If x is a vector or matrix, the number of rows of x is used as window length and the result of window is a matrix with the same dimensions as x where each column contains the windowed values of the input column.
The window length must be greater than 2!
scale
A boolean argument to enable/disable energy correction. If the energy correction is enabled (scale!=0), the window function is scaled by a factor that approximately equalises the energy loss caused by the windowing. To preserve signal energy, scale should be set to 1, otherwise (to preserve signal amplitude) it should be 0.
par
A window parameter depending on the type of the window function (described below). If par is set to 0 (default), a default parameter value is automatically selected.
Description
The following table shows the implemented window functions and the meaning of the parameter par. For the most types an alias function is implement, which is also shown in the table. In the column description w[i] is the i-th value of the window function (i = 0..n-1) and n is the window length.
type name par alias function description
0 rectangle not used
w[i] = 1
1 hanning not used whanning(x{,scale})
w[i] = 0.5 - 0.5 * cos( a*i )
with: a = 2 * pi / (n-1)
2 hamming not used whamming(x{,scale})
w[i] = 0.54 - 0.46 * cos( a*i )
with: a = 2 * pi / (n-1)
3 blackman 0<par≤0.25
default=0.16
wblackman(x{,scale{,par}})
w[i] = (1-par)/2 - 0.5 * cos( a*i ) + par/2 * cos( 2*a*i )
with: a = 2 * pi / (n-1)
4 kaiser 0<par
default=8
wkaiser(x{,scale{,par}})
w[i] = I0( par / m * sqrt(m^2 - (i-m)^2) ) / I0( par )
with: m = (n-1) / 2
      I0(z) is the modfied zero-order bessel function
5 bartlett
(triangle)
not used wbartlett(x{,scale})
0 ≤ i ≤ m:  w[i] = i / m
m <  i <  n: w[i] = 2 - i / m
with: m = (n-1) / 2
6 tappered rectangle not used wtaprect(x{,scale}) A rectangle with to short hanning slopes.
7 nuttall not used wnuttall(x{,scale}) A 4-term blackman-harris window with high dynamic range, low frequency resolution and minimized maximum sidelobes.
Nuttall, Albert H. "Some Windows with Very Good Sidelobe Behavior." IEEE Transactions on Acoustics, Speech, and Signal Processing. Vol. ASSP-29 (February 1981). pp. 84-91
8 flat-top not used wflattop(x{,scale}) A 5-term blackman-harris window with high dynamic range, low frequency resolution and minimized passband ripple (< 0.01dB). Flat-top windows are primarily used for calibration purposes.
9 gauss 0<par≤ 20
default=3
wgauss(x{,scale{,par}})
w[i] = exp( -0.5 * (par * (m - i) / m) ^ 2 )
with: m = (n-1) / 2
Notes:
  • If the argument type has an invalid value, the rectangle window is used.
  • If the energy-correction is enabled (argument scale!=0), the values w[i] scaled by a factor that approximately equalises the energy loss caused by the window function. The scaling factor is computed using white noise as test signal.
  • If the argument par is supplied to a function not using this argument, it is ignored.
Result
The result r depends on the argument x:
  • x is a number: The value is used as window length n. The result r is vector with length n containing the window function.
  • x is a vector or matrix: The number of rows of x is used as window length. Each column of x is multiplied with the window function (element-wise) and stored in a column of r. The result r has the same type as x.
See also
fft, wconvert, hth

<function list>

Navigation menu

Personal tools