Programmer Guide/Command Reference/EVAL/corrfun: Difference between revisions

From STX Wiki
Jump to navigationJump to search
No edit summary
No edit summary
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{DISPLAYTITLE:{{SUBPAGENAME}}}}
{{DISPLAYTITLE:{{SUBPAGENAME}}}}
Compute the autocorrelation or cross-correlation function.
Compute the autocorrelation or cross-correlation function.
----
;Usage:  
;Usage:  
:{|class="keinrahmen"
:{|class="keinrahmen"
|'''<code>corrfun(''x''<sub>vector</sub> {, ''n'' {, ''scale''}})</code>'''
|<code>corrfun(''x''<sub>vector</sub> {, ''n'' {, ''scale'' {, cyclic}}})</code>
| ... autocorrelation of ''x''
| ... autocorrelation of ''x''
|-
|-
|'''<code>corrfun(''x''<sub>vector</sub>, ''y''<sub>vector</sub> {, ''n'' {, ''scale''}})</code>'''
|<code>corrfun(''x''<sub>vector</sub>, ''y''<sub>vector</sub> {, ''n'' {, ''scale'' {, cylic}}})</code>
| ... cross correlation of ''x'' and ''y''
| ... cross correlation of ''x'' and ''y''
|}
|}
Line 13: Line 12:
:;''n'': the number of lags; 0 < n < <code>ncol(''x'')</code> (default=<code>ncol(''x'')/2</code>)
:;''n'': the number of lags; 0 < n < <code>ncol(''x'')</code> (default=<code>ncol(''x'')/2</code>)
:;''scale'': specifies the scaling of the function:
:;''scale'': specifies the scaling of the function:
::{|class=keinrahmen"
::{|class="keinrahmen"
|''scale=0''  
|''scale=0''  
| ... no scaling (default)
| ... no scaling (default)
Line 21: Line 20:
|-
|-
|''scale=2''  
|''scale=2''  
| ... "unbiased", each lag ''i'' is scaled by the number of correlated elements (<code>1/(ncol(''x'')-1)</code>)
| ... "unbiased", each lag ''i'' is scaled by the number of correlated elements (<code>1/(ncol(''x'')-''i'')</code>)
|}
:;''cyclic'': normal or cyclic indexing
::{|class="keinrahmen"
|''cyclic=0''
| ... normal (default); (<code>acf[i]=sum(x[t]*y[t+i], t=0..ncol(x)-1-i)<code>)
|-
|''cyclic!=0'' 
| ... cyclic; (<code>acf[i]=sum(x[t]*y[(t+i)%ncol(x)], t=0..ncol(x)-1)<code>)
|}
|}
;Result: The autocorrelation of the data vector ''x'' or the cross correlation function of the two vector ''x'' and ''y''. The result is a scalar (if ''n''=1) or a vector with ''n'' elements.


;See also: [[Programmer_Guide/Command_Reference/EVAL/corr|corr]]
;Result: The autocorrelation function of the data vector ''x'' or the cross correlation function of the vectors ''x'' and ''y''. The result is a scalar (if ''n''=1) or a vector with ''n'' elements.
;See also: [[../corr|corr]]


[[Programmer_Guide/Command_Reference/EVAL#Functions|<function list>]]
[[../#Functions|<function list>]]

Latest revision as of 09:39, 1 September 2023

Compute the autocorrelation or cross-correlation function.

Usage
corrfun(xvector {, n {, scale {, cyclic}}}) ... autocorrelation of x
corrfun(xvector, yvector {, n {, scale {, cylic}}}) ... cross correlation of x and y
x, y
data vectors
n
the number of lags; 0 < n < ncol(x) (default=ncol(x)/2)
scale
specifies the scaling of the function:
scale=0 ... no scaling (default)
scale=1 ... "biased", each lag i is scaled by the length of x (1/ncol(x))
scale=2 ... "unbiased", each lag i is scaled by the number of correlated elements (1/(ncol(x)-i))
cyclic
normal or cyclic indexing
cyclic=0 ... normal (default); (acf[i]=sum(x[t]*y[t+i], t=0..ncol(x)-1-i))
cyclic!=0 ... cyclic; (acf[i]=sum(x[t]*y[(t+i)%ncol(x)], t=0..ncol(x)-1))
Result
The autocorrelation function of the data vector x or the cross correlation function of the vectors x and y. The result is a scalar (if n=1) or a vector with n elements.
See also
corr

<function list>

Navigation menu

Personal tools