Programmer Guide/SPU Reference/LIMITER: Difference between revisions

From STX Wiki
Jump to navigationJump to search
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{DISPLAYTITLE:{{SUBPAGENAME}}}}
{{DISPLAYTITLE:{{SUBPAGENAME}}}}
Apply limiter function to a signal.
Apply a non-linear limiter function to a signal.
==<code>[SPU LIMITER <var>X TYPE MAX LIM</var> OUT <var>Y Q</var>]</code>==
==<code>[SPU LIMITER <var>X TYPE MAX LIM</var> OUT <var>Y Q</var>]</code>==
{|class="einrahmen"
{|class="einrahmen"
Line 17: Line 17:
|<var>Y</var>||limited signal||same type as <var>A</var>||variable  
|<var>Y</var>||limited signal||same type as <var>A</var>||variable  
|-
|-
|<var>Q</var>||overload ratio||number||variable  
|<var>Q</var>||relative number of limited samples||number||variable  
|}
|}
;Description:
;Description:
Line 23: Line 23:
:<math>y_i = \begin{cases}  
:<math>y_i = \begin{cases}  
x_i  & \mbox{ if }|x_i| \leqslant LIM \\
x_i  & \mbox{ if }|x_i| \leqslant LIM \\
sign(x_i).f(\frac{|x_i|}{MAX}) & \mbox{ otherwise}  
sign(x_i).f \left ( \frac{|x_i|}{MAX} \right ) & \mbox{ otherwise}  
\end{cases}
\end{cases}
</math>
</math>
The limiter function is selected by the input <var>TYPE</var>.
The absolute magitude of the limited signal is always lower than <var>MAX</var>. The limiter function is selected by the input <var>TYPE</var>.
:{|class="einrahmen"
:{|class="einrahmen"
!<var>TYPE</var> !!limiter function ''f''(''z''<sub>i</sub>)
!<var>TYPE</var> !!limiter function ''f''(''z''<sub>i</sub>)
Line 37: Line 37:
|-
|-
|<code>2</code> or <code>EXPONENTIAL</code>
|<code>2</code> or <code>EXPONENTIAL</code>
|<math>1-(1-k) \cdot e^{-\frac{z-k}{1-k}\!}</math>
|<math>1-(1-k) \cdot e^{-\frac{z-k}{1-k}}</math>
|}
|}
:with: <math>z = \frac{|x_i|}{MAX}, k = \frac{LIM}{MAX}</math>
:with: <math>z_i = \frac{|x_i|}{MAX}, k = \frac{LIM}{MAX}</math>




The output <var>Q</var> (overload ratio) is set to the relative number of limited (changed) samples.
The output <var>Q</var> is set to the relative number of limited (changed) samples.
:<math>Q = \frac{changedSamples}{processedSamples}</math>
:<math>Q = \frac{changedSamples}{processedSamples}</math>



Latest revision as of 10:54, 9 May 2011

Apply a non-linear limiter function to a signal.

[SPU LIMITER X TYPE MAX LIM OUT Y Q]

input description data type value type default value
X input signal number, vector variable
TYPE limiter function
(RECTANGLE, ATAN, EXPONENTIAL)
number (int.), string constant 0 (= RECTANGLE)
MAX maximum value; 0 < MAX number constant 1
LIM limiter start value; 0 < LIMMAX number constant 1
output description data type value type comment
Y limited signal same type as A variable
Q relative number of limited samples number variable
Description

This SP-atom applies a non-linear magnitude weighting (= limiter function) to the signal. The limiter function is only applied if the absolute value of the signal magnitude is higher than the specified limiter start magnitude LIM. For the limiter function, the following algorithm is used:

{\displaystyle y_{i}={\begin{cases}x_{i}&{\mbox{ if }}|x_{i}|\leqslant LIM\\sign(x_{i}).f\left({\frac {|x_{i}|}{MAX}}\right)&{\mbox{ otherwise}}\end{cases}}}

The absolute magitude of the limited signal is always lower than MAX. The limiter function is selected by the input TYPE.

TYPE limiter function f(zi)
0 or RECTANGLE {\displaystyle k\!}
1 or ATAN {\displaystyle k+(1-k)\cdot {\frac {2}{\pi }}\cdot atan\left({\frac {z-k}{1-k}}\cdot {\frac {\pi }{2}}\right)}
2 or EXPONENTIAL {\displaystyle 1-(1-k)\cdot e^{-{\frac {z-k}{1-k}}}}
with: {\displaystyle z_{i}={\frac {|x_{i}|}{MAX}},k={\frac {LIM}{MAX}}}


The output Q is set to the relative number of limited (changed) samples.

{\displaystyle Q={\frac {changedSamples}{processedSamples}}}
See also

<SP-atoms>

Navigation menu

Personal tools