Programmer Guide/Command Reference/EVAL/corrfun: Difference between revisions
From STX Wiki
< Programmer Guide | Command Reference | EVAL
Jump to navigationJump to search
m (1 revision: Initial import) |
No edit summary |
||
Line 1: | Line 1: | ||
{{DISPLAYTITLE:{{SUBPAGENAME}}}} | |||
Compute the autocorrelation or cross-correlation function. | |||
---- | |||
;Usage 1: '''<code>var(''x''<sub>vector</sub>, ''y''<sub>vector</sub>)</code>''' | |||
;Result 1: The correlecation coefficient ''r'' (product-moment correlation) of the vectors ''x'' and ''y''. | |||
:<code>''r'' = var(''x'', ''y'') / sqrt( var(''x'') * var(''y'') )</code> | |||
---- | |||
;Usage 2: '''<code>var(''x''<sub>matrix</sub>)</code>''' | |||
:'''<code>var(''x''<sub>matrix</sub>, ''y''<sub>scalar</sub>)</code>''' | |||
:'''<code>var(''x''<sub>matrix</sub>, ''y''<sub>vector</sub>)</code>''' | |||
;Result 2: The correlation matrix ''r'' of the column vectors of ''x''. | |||
:<code>''r''[i,j] = var(''x[*,i]'', ''x''[*,j]) / sqrt( var(''x''[*,i]) * var(''x''[*,j]) ) , with: i,j = 0..ncol(''x'')-1</code> | |||
:If the argument ''y'' is supplied, it is used as column average like for the computation of the [[Programmer_Guide/Command_Reference/EVAL/var|covariance matrix]]. | |||
;See also: [[Programmer_Guide/Command_Reference/EVAL/avr|avr]], [[Programmer_Guide/Command_Reference/EVAL/dev|dev]], [[Programmer_Guide/Command_Reference/EVAL/var|var]], [[Programmer_Guide/Command_Reference/EVAL/corrfun|corrfun]] | |||
[[Programmer_Guide/Command_Reference/EVAL#Functions|<function list>]] | |||
{{DISPLAYTITLE:{{SUBPAGENAME}}}} | {{DISPLAYTITLE:{{SUBPAGENAME}}}} | ||
=====corrfun===== | =====corrfun===== |
Revision as of 14:10, 8 April 2011
Compute the autocorrelation or cross-correlation function.
- Usage 1
var(xvector, yvector)
- Result 1
- The correlecation coefficient r (product-moment correlation) of the vectors x and y.
r = var(x, y) / sqrt( var(x) * var(y) )
- Usage 2
var(xmatrix)
var(xmatrix, yscalar)
var(xmatrix, yvector)
- Result 2
- The correlation matrix r of the column vectors of x.
r[i,j] = var(x[*,i], x[*,j]) / sqrt( var(x[*,i]) * var(x[*,j]) ) , with: i,j = 0..ncol(x)-1
- If the argument y is supplied, it is used as column average like for the computation of the covariance matrix.
corrfun
corrfun(x, lags, scale) | ||
lags | the number of coefficients | def.=nrow(x)/2 |
scale | the scaling | def.=0 |
0=no scaling | ||
1=scaling with "1 / nrow(x)", | ||
2=scaling with "1 / (nrow(x) - lag)" |
The result is a vector with lags elements. |- |corrfun(x, y, lags, scale) |Calculate the coefficients 0..lags-1 of the cross-correlation function of the vectors x and y. The parameters are the same as for the auto-correlation function. |}