Programmer Guide/Command Reference/EVAL/haclust: Difference between revisions

From STX Wiki
Jump to navigationJump to search
No edit summary
No edit summary
Line 7: Line 7:
::{|class="einrahmen"
::{|class="einrahmen"
!''m'' !! method
!''m'' !! method
|-
|0 ||Single Linkage
|0 ||Single Linkage
|-
|-

Revision as of 13:19, 18 April 2011

Hierarchical-agglomerative cluster analysis.


Usage 1
haclust(d, m)
d
A dissimilarity or distance matrix. For N data points this is a NxN matrix (e.g. created using the function dist)
m
The cluster method:
m method
0 Single Linkage
1 Complete Linkage
2 Weighted Average Linkage
3 Average Linkage
4 Median
5 Centroid
6 Ward
Result 1
The result is a cluster hierarchy. This is a 3x(N-1) table containing the merged cluster pairs and the agglomeration niveaus.

Usage 2
haclust(h, c)
h
A cluster hierarchy (e.g. computed with Usage 1).
c
The number of clusters.
Result
The created partition, which is a 1xN table containing the group indices.

See also: modclust


Example:

// A simple demonstration of <code>haclust</code> usage.
[macro haclust_example]
// create bivariate input data
#datatable := new table * 2 /p num:x num:y
$#datatable[*,0] := '1;2;1;3;4.5'
$#datatable[*,1] := '1;0.5;4;2;4'
        
// compute distance matrix
#disttable := eval dist($#datatable)

// cluster analysis methods:
// 0 (SL), 1 (CL), 2 (WAL), 3 (AL), 4 (M), 5 (C), 6 (W)
#method := 6    // Ward

// nr of clusters
#nclusters := 2

// compute hierarchy and partition
#hierarchy := eval haclust($#disttable,$#method)
#partition := eval haclust($#hierarchy,$#nclusters)

// show results
showitem $#hierarchy
showitem $#partition
exit

Navigation menu

Personal tools