Programmer Guide/Command Reference/EVAL/corrfun: Difference between revisions

From STX Wiki
Jump to navigationJump to search
No edit summary
No edit summary
Line 3: Line 3:
;Usage:  
;Usage:  
:{|class="keinrahmen"
:{|class="keinrahmen"
|<code>corrfun(''x''<sub>vector</sub> {, ''n'' {, ''scale''}})</code>
|<code>corrfun(''x''<sub>vector</sub> {, ''n'' {, ''scale'' {, cyclic}}})</code>
| ... autocorrelation of ''x''
| ... autocorrelation of ''x''
|-
|-
|<code>corrfun(''x''<sub>vector</sub>, ''y''<sub>vector</sub> {, ''n'' {, ''scale''}})</code>
|<code>corrfun(''x''<sub>vector</sub>, ''y''<sub>vector</sub> {, ''n'' {, ''scale'' {, cylic}}})</code>
| ... cross correlation of ''x'' and ''y''
| ... cross correlation of ''x'' and ''y''
|}
|}
Line 22: Line 22:
| ... "unbiased", each lag ''i'' is scaled by the number of correlated elements (<code>1/(ncol(''x'')-''i'')</code>)
| ... "unbiased", each lag ''i'' is scaled by the number of correlated elements (<code>1/(ncol(''x'')-''i'')</code>)
|}
|}
::{|class="keinrahmen"
|''cyclic=0''
| ... normal correlation (default)
|-
|''cyclic!=0''
| ... cyclic correlation (<code>a[i]*b[(i+lag)%ncol(a)]<code>)
|}
;Result: The autocorrelation of the data vector ''x'' or the cross correlation function of the vectors ''x'' and ''y''. The result is a scalar (if ''n''=1) or a vector with ''n'' elements.
;Result: The autocorrelation of the data vector ''x'' or the cross correlation function of the vectors ''x'' and ''y''. The result is a scalar (if ''n''=1) or a vector with ''n'' elements.
;See also: [[../corr|corr]]
;See also: [[../corr|corr]]


[[../#Functions|<function list>]]
[[../#Functions|<function list>]]

Revision as of 09:30, 1 September 2023

Compute the autocorrelation or cross-correlation function.

Usage
corrfun(xvector {, n {, scale {, cyclic}}}) ... autocorrelation of x
corrfun(xvector, yvector {, n {, scale {, cylic}}}) ... cross correlation of x and y
x, y
data vectors
n
the number of lags; 0 < n < ncol(x) (default=ncol(x)/2)
scale
specifies the scaling of the function:
scale=0 ... no scaling (default)
scale=1 ... "biased", each lag i is scaled by the length of x (1/ncol(x))
scale=2 ... "unbiased", each lag i is scaled by the number of correlated elements (1/(ncol(x)-i))
cyclic=0 ... normal correlation (default)
cyclic!=0 ... cyclic correlation (a[i]*b[(i+lag)%ncol(a)])
Result
The autocorrelation of the data vector x or the cross correlation function of the vectors x and y. The result is a scalar (if n=1) or a vector with n elements.
See also
corr

<function list>

Navigation menu

Personal tools