Programmer Guide/Command Reference/EVAL/haclust: Difference between revisions
From STX Wiki
< Programmer Guide | Command Reference | EVAL
Jump to navigationJump to search
(initial import) |
m (1 revision: Initial import) |
(No difference)
|
Revision as of 17:31, 18 November 2010
Contents
haclust
Hierarchical-agglomerative cluster analysis.
Usage:
haclust(d, m)
haclust(h, c)
Parameters:
- d
- A dissimilarity or distance matrix. For N data points this is a NxN matrix (e.g. created using the
EVAL
function dist).
- m
- The cluster method:
0
Single Linkage
1
Complete Linkage
2
Weighted Average Linkage
3
Average Linkage
4
Median
5
Centroid
6
Ward
- h
- A cluster hierarchy.
- c
- The number of clusters.
Result:
When using the parameters d and m, the result is a cluster hierarchy. This is a 3x(N-1) table containing the merged cluster pairs and the agglomeration niveaus.
The parameters h and c cause haclust
to create a partition, which is a 1xN table containing the group indices.
Examples:
A simple demonstration of haclust
usage.
[macro haclust_example] // create bivariate input data #datatable := new table * 2 /p num:x num:y $#datatable[*,0] := '1;2;1;3;4.5' $#datatable[*,1] := '1;0.5;4;2;4' // compute distance matrix #disttable := eval dist($#datatable) // cluster analysis methods: // 0 (SL), 1 (CL), 2 (WAL), 3 (AL), 4 (M), 5 (C), 6 (W) #method := 6 // Ward // nr of clusters #nclusters := 2 // compute hierarchy and partition #hierarchy := eval haclust($#disttable,$#method) #partition := eval haclust($#hierarchy,$#nclusters) // show results showitem $#hierarchy showitem $#partition exit