Programmer Guide/Command Reference/EVAL/corr: Difference between revisions
From STX Wiki
< Programmer Guide | Command Reference | EVAL
Jump to navigationJump to search
m (1 revision: Initial import) |
No edit summary |
||
Line 1: | Line 1: | ||
{{DISPLAYTITLE:{{SUBPAGENAME}}}} | |||
Compute the correlation coefficient or the correlcation matrix. | |||
---- | |||
;Usage 1: '''<code>var(''x''<sub>vector</sub>, ''y''<sub>vector</sub>)</code>''' | |||
;Result 1: The correlecation coefficient ''r'' (product moment correlation) of the vectors ''x'' and ''y''. | |||
:<code>''r'' = var(''x'', ''y'') / sqrt( var(''x'')* var(''y'') )</code> | |||
---- | |||
;Usage 3: '''<code>var(''x''<sub>matrix</sub>)</code>''' | |||
:'''<code>var(''x''<sub>matrix</sub>, ''y''<sub>scalar</sub>)</code>''' | |||
:'''<code>var(''x''<sub>matrix</sub>, ''y''<sub>vector</sub>)</code>''' | |||
;Result 3: The covariance matrix ''v'' of the column vectors of ''x''. | |||
:<code>''v<sub>i,j</sub>'' = sum<sub>k = 0..nrow(''x'')</sub> ( (x<sub>k,i</sub>-a<sub>i</sub>) * (x<sub>k,j</sub>-a<sub>j</sub>) ) / (nrow(''x'')-1) , with: i,j = 0..ncol(''x'')</code> | |||
:The column averages a<sub>i=0..ncol(''x'')</sub> are computed as follows: | |||
::{|class="einrahmen" | |||
|''y'' not supplied || a<sub>i</sub> = avr(''x''<sub>*,i</sub>) | |||
|- | |||
|''y''<sub>scalar</sub> || a<sub>i</sub> = ''y'' | |||
|- | |||
|''y''<sub>vector</sub> || a<sub>i</sub> = ''y''<sub>i</sub> | |||
|- | |||
|} | |||
;See also: [[Programmer_Guide/Command_Reference/EVAL/avr|avr]], [[Programmer_Guide/Command_Reference/EVAL/dev|dev]], [[Programmer_Guide/Command_Reference/EVAL/corr|corr]] | |||
[[Programmer_Guide/Command_Reference/EVAL#Functions|<function list>]] | |||
{{DISPLAYTITLE:{{SUBPAGENAME}}}} | {{DISPLAYTITLE:{{SUBPAGENAME}}}} | ||
=====corr===== | =====corr===== |
Revision as of 13:39, 8 April 2011
Compute the correlation coefficient or the correlcation matrix.
- Usage 1
var(xvector, yvector)
- Result 1
- The correlecation coefficient r (product moment correlation) of the vectors x and y.
r = var(x, y) / sqrt( var(x)* var(y) )
- Usage 3
var(xmatrix)
var(xmatrix, yscalar)
var(xmatrix, yvector)
- Result 3
- The covariance matrix v of the column vectors of x.
vi,j = sumk = 0..nrow(x) ( (xk,i-ai) * (xk,j-aj) ) / (nrow(x)-1) , with: i,j = 0..ncol(x)
- The column averages ai=0..ncol(x) are computed as follows:
y not supplied ai = avr(x*,i) yscalar ai = y yvector ai = yi
corr
The product moment correlation of the vector xv and yv.
Usage:
corr(xv,yv)
Return Type:
scalar