Programmer Guide/Command Reference/EVAL/corr: Difference between revisions

From STX Wiki
Jump to navigationJump to search
No edit summary
No edit summary
Line 3: Line 3:
----
----
;Usage 1: '''<code>var(''x''<sub>vector</sub>, ''y''<sub>vector</sub>)</code>'''
;Usage 1: '''<code>var(''x''<sub>vector</sub>, ''y''<sub>vector</sub>)</code>'''
;Result 1: The correlecation coefficient ''r'' (product moment correlation) of the vectors ''x'' and ''y''.  
;Result 1: The correlecation coefficient ''r'' (product-moment correlation) of the vectors ''x'' and ''y''.  
:<code>''r'' = var(''x'', ''y'') / sqrt( var(''x'')* var(''y'') )</code>
:<code>''r'' = var(''x'', ''y'') / sqrt( var(''x'') * var(''y'') )</code>
----
----
;Usage 3: '''<code>var(''x''<sub>matrix</sub>)</code>'''
;Usage 2: '''<code>var(''x''<sub>matrix</sub>)</code>'''
:'''<code>var(''x''<sub>matrix</sub>, ''y''<sub>scalar</sub>)</code>'''
:'''<code>var(''x''<sub>matrix</sub>, ''y''<sub>scalar</sub>)</code>'''
:'''<code>var(''x''<sub>matrix</sub>, ''y''<sub>vector</sub>)</code>'''
:'''<code>var(''x''<sub>matrix</sub>, ''y''<sub>vector</sub>)</code>'''
;Result 3: The covariance matrix ''v'' of the column vectors of ''x''.  
;Result 2: The correlation matrix ''r'' of the column vectors of ''x''.  
:<code>''v<sub>i,j</sub>'' = sum<sub>k = 0..nrow(''x'')</sub> ( (x<sub>k,i</sub>-a<sub>i</sub>) * (x<sub>k,j</sub>-a<sub>j</sub>) ) / (nrow(''x'')-1) , with: i,j = 0..ncol(''x'')</code>
:<code>''r''[i,j] = var(''x[*,i]'', ''x''[*,j]) / sqrt( var(''x''[*,i]) * var(''x''[*,j]) ) , with: i,j = 0..ncol(''x'')-1</code>
:The column averages a<sub>i=0..ncol(''x'')</sub> are computed as follows:
:The column averages a<sub>i=0..ncol(''x'')</sub> are computed as follows:
::{|class="einrahmen"
::{|class="einrahmen"

Revision as of 13:51, 8 April 2011

Compute the correlation coefficient or the correlcation matrix.


Usage 1
var(xvector, yvector)
Result 1
The correlecation coefficient r (product-moment correlation) of the vectors x and y.
r = var(x, y) / sqrt( var(x) * var(y) )

Usage 2
var(xmatrix)
var(xmatrix, yscalar)
var(xmatrix, yvector)
Result 2
The correlation matrix r of the column vectors of x.
r[i,j] = var(x[*,i], x[*,j]) / sqrt( var(x[*,i]) * var(x[*,j]) ) , with: i,j = 0..ncol(x)-1
The column averages ai=0..ncol(x) are computed as follows:
y not supplied ai = avr(x*,i)
yscalar ai = y
yvector ai = yi
See also
avr, dev, corr

<function list>



corr

The product moment correlation of the vector xv and yv.

Usage:

corr(xv,yv)

Return Type:

scalar

Navigation menu

Personal tools