Programmer Guide/Command Reference/EVAL/svd: Difference between revisions
From STX Wiki
< Programmer Guide | Command Reference | EVAL
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
:;<var>trn</var>:transformation to be applied to A | :;<var>trn</var>:transformation to be applied to A | ||
::{|class="einrahmen" | ::{|class="einrahmen" | ||
!''trn'' !!transformed matrix ''T'' !!description !! <code>trn(''T'')*''T''</code> (MxM | !''trn'' !!transformed matrix ''T'' (NxM) !!description !! <code>trn(''T'')*''T''</code><BR>(MxM) | ||
|- | |- | ||
|0 ||''T''[i,j] = ''A''[i,j] | |0 ||''T''[i,j] = ''A''[i,j] |
Revision as of 08:30, 21 April 2011
Compute the variance, covariance or covariance-matrix.
- Usage 1
svd(
0, A, trn)
- A
- the NxM matrix to be transformed
- trn
- transformation to be applied to A
trn transformed matrix T (NxM) description trn(T)*T
(MxM)0 T[i,j] = A[i,j] no transformation "Streumatrix" 1 T[i,j] = A[i,j]-avr(A) subtract matrix mean 2 T[i,j] = A[i,j]-avr(A[*,j]) subtract column mean (center columns) covariance matrix 3 T[i,j] = (A[i,j]-avr(A[*,j]))/dev(A[*,j]) subtract column mean, devide by column deviation (center and standardize columns) correlation matrix 4 T[i,j] = A[i,j]-(avr(A[i,*])+avr(A[*,j]))+avr(A) subtract row and column mean, add matrix mean (center rows and columns)
- Result 1
- The transformed matrix T.
- Usage 2
svd(
1, A, trn)
- A
- the NxM matrix to be transformed
- trn
- transformation to be applied to A (see Usage 1)
- Result 2
- Computes the transformed matrix T and returns the matrix C=
trn(T)*T
. C is a square matrix with M rows and columns (MxM).
trn transformation description 0 T[i,j] = A[i,j] no transformation 1 T[i,j] = A[i,j]-avr(A) subtract matrix mean 2 T[i,j] = A[i,j]-avr(A[*,j]) subtract column mean (center columns) 3 T[i,j] = (A[i,j]-avr(A[*,j]))/dev(A[*,j]) subtract column mean, devide by column deviation (center and standardize columns) 4 T[i,j] = A[i,j]-(avr(A[i,*])+avr(A[*,j]))+avr(A) subtract row and column mean, add matrix mean (center rows and columns)
- Result 1
- The variance v of vector x.
v = sum( (x-avr(x))?^2 ) / (nrow(x)-1)
v = (x-avr(x))^2 / (nrow(x)-1)
- Usage 2
var(xvector, yvector)
- Result 2
- The covariance v of the vectors x and y.
v = sum( (x-avr(x) ?* (y-avr(y)) ) / (nrow(x)-1)
v = ((x-avr(x) * (y-avr(y))) / (nrow(x)-1)
- Usage 3
var(xmatrix)
var(xmatrix, yscalar)
var(xmatrix, yvector)
- Result 3
- The covariance matrix v of the column vectors of x.
v[i,j] = sum( (x[*,i]-a[i]) ?* (x[*,j]-a[j]) ) / (nrow(x)-1) , with: i,j = 0..ncol(x)-1
- The column averages a[i] are computed as follows:
y not supplied a[i] = avr(x[*,i]) yscalar a[i] = y yvector a[i] = y[i]