Programmer Guide/Command Reference/EVAL/svd: Difference between revisions
From STX Wiki
< Programmer Guide | Command Reference | EVAL
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 31: | Line 31: | ||
---- | ---- | ||
;Usage 2: '''<code>svd('''1''', <var>A</var>, <var>trn</var>)</code>''' | ;Usage 2: '''<code>svd('''1''', <var>A</var>, <var>trn</var>)</code>''' | ||
:;Result 2: Returns the matrix ''C''=<code>trn(''T'')*''T''</code>. ''C'' is a square matrix with M rows and columns (MxM). | |||
:;Result 2: | |||
;See also: [[../var|var]], [[../corr|corr]], [[../dist|dist]], [[../haclust|haclust]], [[../modclust|modclust]] | ;See also: [[../var|var]], [[../corr|corr]], [[../dist|dist]], [[../haclust|haclust]], [[../modclust|modclust]] | ||
[[../#Functions|<function list>]] | [[../#Functions|<function list>]] |
Revision as of 08:32, 21 April 2011
Compute the variance, covariance or covariance-matrix.
- Usage 1
svd(
0, A, trn)
- A
- the NxM matrix to be transformed
- trn
- transformation to be applied to A
trn transformed matrix T (NxM) description trn(T)*T
(MxM)0 T[i,j] = A[i,j] no transformation "Streumatrix" 1 T[i,j] = A[i,j]-avr(A) subtract matrix mean 2 T[i,j] = A[i,j]-avr(A[*,j]) subtract column mean (center columns) covariance matrix 3 T[i,j] = (A[i,j]-avr(A[*,j]))/dev(A[*,j]) subtract column mean, devide by column deviation (center and standardize columns) correlation matrix 4 T[i,j] = A[i,j]-(avr(A[i,*])+avr(A[*,j]))+avr(A) subtract row and column mean, add matrix mean (center rows and columns)
- Result 1
- The transformed matrix T.
- Usage 2
svd(
1, A, trn)
- Result 2
- Returns the matrix C=
trn(T)*T
. C is a square matrix with M rows and columns (MxM).