yint
From STX Wiki
< Programmer Guide | Command Reference | EVAL
Jump to navigationJump to search
Calculates the integration (differnce quotients) of the vector y = f(x).
- Usage 1
yint(yvector {, dxscalar=1})
- Result 1
- The result is the vector r with
nrow(y)
elements.r[0]=y[0]*dx
r[i]=r[i-1]+y[i]*dx; with: i=1..nrow(y)-1
- Usage 2
yint(yvector , dxscalar, cscalar)
- Result 2
- The result is the vector r with
nrow(y)+1
elements.r[0]=c
r[i]=r[i-1]+y[i-1]*dx; with: i=1..nrow(y)
- Usage 3
yint(yvector, dxvector)
- Result 3
- The result is the vector r with
nrow(y)
elements. The argument dx contains the differences of the x values and is a vector withnrow(y)
elements.r[0]=y[0]*dx[0]
r[i]=r[i-1]+y[i]*dx[i]; with: i=1..nrow(y)-1
- Usage 4
yint(yvector, dxvector, cscalar)
- Result 4
- The result is the vector r with
nrow(y)+1
elements. The argument dx contains the differences of the x values and is a vector withnrow(y)
elements.r[0]=c
r[i]=r[i-1]+y[i-1]*dx[i-1]; with: i=1..nrow(y)
- Usage 5
yint(yvector, xvector)
- Result 5
- The result is the vector r with
nrow(y)
elements. The argument x contains the x values and is a vector withnrow(y)+1
elements.r[0]=y[0]*(x[1]-x[0])
r[i]=r[i-1]+y[i]*(x[i+1]-x[i]); with: i=1..nrow(y)-1
- Usage 6
yint(yvector, xvector, cscalar)
- Result 6
- The result is the vector r with
nrow(y)+1
elements. The argument x contains the x values and is a vector withnrow(y)+1
elements.r[0]=c
r[i]=r[i-1]+y[i-1]*(x[i]-x[i-1]); with: i=1..nrow(y)
- See also
- ydiff