svd

From STX Wiki
Jump to navigationJump to search

Compute the variance, covariance or covariance-matrix.


Usage 1
svd(0, A, trn)
A
the NxM matrix to be transformed
trn
transformation to be applied to A
trn transformed matrix T (NxM) description trn(T)*T
(MxM)
0 T[i,j] = A[i,j] no transformation "Streumatrix"
1 T[i,j] = A[i,j]-avr(A) subtract matrix mean
2 T[i,j] = A[i,j]-avr(A[*,j]) subtract column mean (center columns) covariance matrix
3 T[i,j] = (A[i,j]-avr(A[*,j]))/dev(A[*,j]) subtract column mean, devide by column deviation (center and standardize columns) correlation matrix
4 T[i,j] = A[i,j]-(avr(A[i,*])+avr(A[*,j]))+avr(A) subtract row and column mean, add matrix mean (center rows and columns)
Result 1
The transformed matrix T.

Usage 2
svd(1, A, trn)
Result 2
Returns the matrix C=trn(T)*T. C is a square matrix with M rows and columns (MxM).


See also
var, corr, dist, haclust, modclust

<function list>

Navigation menu

Personal tools