svd
From STX Wiki
< Programmer Guide | Command Reference | EVAL
Jump to navigationJump to search
Compute the variance, covariance or covariance-matrix.
- Usage 1
svd(
0, A, trn)
- A
- the NxM matrix to be transformed
- trn
- transformation to be applied to A
trn transformed matrix T (NxM) description trn(T)*T
(MxM)0 T[i,j] = A[i,j] no transformation "Streumatrix" 1 T[i,j] = A[i,j]-avr(A) subtract matrix mean 2 T[i,j] = A[i,j]-avr(A[*,j]) subtract column mean (center columns) covariance matrix 3 T[i,j] = (A[i,j]-avr(A[*,j]))/dev(A[*,j]) subtract column mean, devide by column deviation (center and standardize columns) correlation matrix 4 T[i,j] = A[i,j]-(avr(A[i,*])+avr(A[*,j]))+avr(A) subtract row and column mean, add matrix mean (center rows and columns)
- Result 1
- The transformed matrix T.
- Usage 2
svd(
1, A, trn)
- Result 2
- Returns the matrix C=
trn(T)*T
. C is a square matrix with M rows and columns (MxM).